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Abstract 
We have developed a model-based, distributed architecture 
that integrates diverse components in a system designed for 
lunar and planetary surface operations: an astronaut’s space 
suit, cameras, all-terrain vehicles, robotic assistant, crew in a 
local habitat, and mission support team. Software processes 
c‘agents”) implemented in the Brahms language, run on 
multiple, mobile platforms. These “mobile agents” interpret 
and transform available data to help people and robotic 
systems coordinate their actions to make operations more 
safe and efficient. The Brahms-based mobile agent 
architecture (MAA) uses a novel combination of agent types 
so the software agents may understand and facilitate 
communications between people and between system 
components. A state-of-the-art spoken dialogue interface is 
integrated with Brahms models, supporting a speech-driven 
field observation record and rover command system. An 
important aspect of the methodology involves first 
simulating the entire system in Brahms, then configuring the 
agents into a runtime system Thus, Brahms provides a 
language, engine, and system builder’s toolkit for specifying 
and implementing multiagent systems. 

Background 
Multiagent systems were a natural outgrowth of 
knowledge-based systems of the 19?Os, the idea of 
multiple, distributed sources of information and model- 
based processing (“distributed AI”) developed in the 
1980s, and the affordable, networked computing platforms 
of the 1990s. However, just as it has become practical to 
construct interacting systems of hardware and software, 
such a s  robotic assistants, GPS devices, biosensors, 
cameras, and the like, system builders need tools to help 
specify how these components are to interact in complex 
situations, means to test the designed processes, and an 
implementation architecture that is robust, modular, and 
amenable to runtime modifications (e.g., allowing 
components to leave or enter the system). We need a 
principled methodology for building multiagent systems 
(Alonso 2002). 

This paper describes how the Brahms simulation system 
(Clancey et al. 1998; Sierhuis 2001) has been adapted to 
provide both a tool for specifying multiagent systems and 
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an implementation architecture for runtime agent 
interactions on mobile platforms. (We call these “mobile 
agents,” to be contrasted with the more dominant meaning 
of agents migrating between hosts [Vulkan 20021). We 
begin with a description of the work scenario, describe how 
Brahms is used to model and control system interactions, 
and then describe two field tests in which the system is 
gradually developed to fit the target. Finally, we conclude 
with a summary of advantages and limits of the Brahms 
architecture for multiagent applications. 

This project is a collaboration across NASA centers and 
other organizations; all of these people might have been 
listed as co-authors of this paper: 

Brahms Project Group (NASA-Ames: W.J. Clancey, 
Principal Investigator; M. Sierhuis, Project 
Manager; R. van Hoof, lead programmer; C. 
Kaskiris, modeler) 
RIALIST Voice Commanding Group (RIACS: John 
Dowding, Jim Hieronymus) 
MEX Vehicle & Wireless Communications Group 
(Ames: Rick Alena, John Ossenfort, Charles Lee) 
EVA Robotic Assistant Group (NASA-JSC: David 
Kortenkamp, Kim Shillcutt, Rob Hirsh, Jeff 
Graham, Rob Burridge) 
Space Suit Biovest (Stanford: Sekou Crawford, in 
collaboration with Joseph Kosmo, JSC). 

Scenario 
Our application involves exploration of Mars, in which a 
crew of six people are living in a habitat for many months. 
Onelong-tern-objective is to automate the rolesf C 4 p h m  
in Apollo, in which a person on Earth (in Houston) 
monitored and managed the navigation, schedule, and data 
collection during lunar traverses (Clancey, in press). 
Because of the communication time delay this function 
cannot be performed from Earth during Mars exploration, 
and other crew members will often be too busy with 
maintenance, scientific analysis, or reporting to attend to 
every second of a four to seven hour Extra-Vehicular 
Activity (EVA). In the initial scenario implemented in 
2002 (Figure l), a EVA crew member drives an ATV, 
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while the EVA Robotic Assistant (ERA; Burridge & 
Graham 2001; Shillcutt et a!. 2002) fn!!ews a!eng or is 
directed to carry out certain activities. Brahms software, 
represented by the ellipses, is running on board the ERA 
and the ATV. A wireless data network (MEWKaoS) links 
all components (biosensors, ERA, and Brahms running on 
crew backpacks, the ERA, ATVs, and in the hab). Through 
voice commanding (Dialog system), the crew member may 
control the ERA, name places, and log science data. 
Brahms agents carry out the commands. 

Brahms Architecture 
Brahms is a multiagent system, developed for over a 
decade as a way to model and simulate people within a 
social and physical world. Agents inherit beliefs and 
activities from groups (representing capabilities, roles, 
affiliations, work areas, etc.). A subsumption architecture 
provides flexible perceptual scoping, redirection of 
attention, and resumption of interrupted activities (Clancey 
2002, compares activity and task modeling). 

Each Brahms system in the MAA includes three kinds of 
agents: 
1. Personal Agent: Represents the interests and activities 

of corresponding people and systems at some location. 
For example, the Brahms system running on the ERA 
includes an agent representing the ERA’S beliefs (world 
view) and activities. 

2. Communication Agent: A Java-based agent that 
interfaces between a Brahms system and other hardware 
or software components. For example, the Dialog Agent 
interfaces with the speech commanding system provided 
by the RIALIST group. 

3. Proxy Agent: Represents agents and objects residing in 
other Brahms systems (e.g., ATV Brahms includes an 
ERA proxy agent). Usually redirects communications, 
but may stand in (e.g., when a mobile agent is out of 
communication range or unable to respond immediately 
because of the time delay). 
The Brahms models and physical devices are integrated 

through OAA messages (Martin et al. 1999), KAoS 
(Bradshaw et al. 1997), and CORBA: An agent in one 
Brahms model communicates with its proxy agent 
representation in another model through the KAoS 
middleware layer. Communication agents serve as 
interfaces between Brahms and external machines (e.g., the 
ERA) using CORBA objects. 

The total hardware-software system shown in Figure 1 is 
first simulated in a single Brahms model, with the different 
agents and devices modeled in different locations and 
carrying out certain (perhaps scheduled) activities, 
according to the scenario(s) being tested. In addition to the 
components shown in the ellipses, the people and external 
systems (e.g., ERA) are also simulated. This simulation, 
which serves a specification for the structure of the final 
runtime system, therefore includes: 

Simulated People and Systems (e.g., crew, ATV, 
Dialog system) 
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o 

Figure 0: Brahms MAA 2002 

o Software Agents (which will become runtime 
agents) 

Persopal Agents of people (e.g., crew agent) and 
systems (e.g., ERA Agent in ERA Brahms) 
Communication agents (e.g., Dialog CA) 
Proxy agents (e.g., ERA agent in ATV Brahms) 

For example, the simulated protocol includes voice 
_commands_hy_asimulated crew _rnernber*$Jocxss&by -a 
personal agent, passed to the simulated Dialog CA, which 
passes the utterance to the simulated Dialog system. In the 
implemented runtime system, these components are 
replaced by actual people and systems (the crew member, 
the Dialog CA written in Java, and the Dialog system). The 
personal agents in the simulation remain unchanged in the 
runtime system. 

First Integration Field Test: April-May 2002 
The first systems integration field test was completed at 
NASNAmes in April 2002. A “level 0” scenario integrated 



the Dialog system and a distributed Brahms model running 
on the MEX ATV and a simulated ERA, using the MEX 
wireless network. The first field test occurred at JSC at the 
end of May, including the ERA control software running 
onboard the actual ERA. 

The level 0 scenario demonstrates remote commanding 
of the ERA by the EVA astronaut, using human speech. 
The command to the ERA involves taking a still-picture of 
the astronaut (“ERA take a picture of me”). The Dialog 
system parses the human voice input and communicates the 
derived command to the astronaut’s personal Brahms 
agent. The astronaut’s personal agent derives the correct 
robot command (including object references) and 
communicates it to the ERA’s personal agent running 
onboard the ERA (over the MEX wireless network), which 
in turn communicates with the ERA using a CORBA 
interface. The ERA executes the command and stores the 
image. The ERA’s personal agent composes and stores the 
context of the picture in the form of a picture meta-data 
object and informs the EVA astronaut that the image has 
been taken, using the Dialog system. 

Besides testing the Dialog/Brahms/MEX interface, 
another objective of the field test was to apply and test the 
“simulation to implementation” methodology. This Use- 
Case method (Jacobson 1994) uses a Brahms simulation 
model as an agent- and object-based computational 
functional design of the overall software and hardware 
system. The runtime system replaces the simulated people 
and systems by their corresponding actuzl entities. This 
approach allows us to test a complete MA.4 system. This is 
especially valuable for simulating those elements or 
capabilities that are not still being implemented or only 
proposed (e.g. new voice commands for controlling the 
robot). 

Second Integration Field Test: Joseph City & 
Meteor Crater, September 2002 

The second field test was held Sept. 3-13, 2002 in Arizona. 
The goal was to verify the MAA design, implementation, 
and integration with additional devices in a more authentic 
field setting. The tests included people wearing an 
advanced Mark 111 spacesuit working alongside the ERA 
(both from JSC), plus a biovest from Stanford University’s 
National Biocomputation Center with _physiological 
sensors, including EKG and respiration, worn inside the 
spacesuit and transmitted wirelessly to a Personal Data 
Assistant (iPaq PDA). The speech dialogue system and 
Brahms were again hosted on MEX, which provided 
computing and wireless communications on a rugged ATV, 
proven capable of remote field deployment from previous 
tests in the High Canadian Arctic. 

A variety of functions, available to the astronaut through 
the integration of physical systems and Brahms agents, 
were tested using several pre-scripted scenarios involving 
spoken dialogue: 

1. 

2. 

3. 

4. 

5 .  

6.  

7. 

Start and stop gathering and storing biophysical data 
wirelessly during an EVA. This was tested with and 
without wearing the Mark 111 spacesuit. 
Start and stop tracking the astronaut’s and ERA’s 
GPS location data, for recording EVA paths. 
Providing real-time location information through 
spoken dialog (“Where am I?”). 
Define places (geographical location objects) in 
real-time, associating given location names with 
GPS coordinates for recording visited places during 
the EVA. 
Define sample bag objects in real-time, recording 
when and where samples have been collected. 
Record voice annotations associated with a time, 
place, and optionally a sample bag object. 
Have ERA use its cameras to take photos of the 
tracked astronaut. 

The results of the field test fall into three areas of 
concern: 
1. 

2. 

3. 

Agent architecture: the system must be better 
designed to cope with a brittle wireless network, 
with methods for handling lack of communication, 
as well as means for people to monitor agent status. 
The relation between Brahms and the biovest 
requires separating out low-level sensor processing 
from interpretation and data archiving (otherwise 
the Brahms history system can be overloaded with 
details). 
Hardware: Requires sensors to indicate remaining 
power and provide warnings; means to handle 
bandwidth interference and microphone sensitivity; 
better discipline for configuring connectors, so what 
is tested is used in the field; augmented ERA 
capabilities, e.g., to hold a sample bag. 
Logistics: The large number of teams coordinate 
well, but the next round of tests should eliminate the 
spacesuit in order to focus on MAA infrastructure; 
in-situ testing must be better staged (operations 
were too often driven by including the suited 
subject, which required special microphones and 
biovest connections that complicated the simpler 
connectivity tests that had not yet been 
accomplished); a more permanent field shelter is 
recluired during several weeks of outdoor work. - 

Somewhat unexpectedly, the most important result was that 
wsinga multiagent simula_tbn with-s-cenario-based- form-a1 
specification greatly facilitated and very likely significantly 
accelerated cross-institution collaboration. That is, Brahms 
was shown to be a useful collaborative engineering tool for 
integrating sensors, automation, procedures, and 
communication. 

Advantages of Brahms Architecture 
Developing multiagent systems requires “a systematic 
means of analyzing the problem, of working how it can be 
best structured.. .and then determining how individual 
agents can be structured” (Jennings et al. 1998, p. 3 1). The 
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field tests to date demonstrate that Brahms language and 
the semantics we attribute to i% provide 2 powerful 
framework for specifying and implementing a multiagent 
system. The language formalizes ontological distinctions 
that lead the system builder to ground agent behaviors in 
located interactions of explicit communication (including 
voice and written documents), perception (“detectables” 
for forming beliefs conditional on current actions), and 
m o v e m e n t  or other physical changes within the 
environment (e.g., flipping a switch). By enforcing the 
semantics  of  language primitives such as 
“communication,” the simulation can be converted more or 
less directly into a distributed runtime system, in which 
requests and information are transmitted by actual people 
and devices, while involving software agents that were 
previously incorporated in the simulation. 

To summarize some of the overall advantages of the 
architecture that we have drawn upon in creating the 
runtime systems: 

The language allows seamlessly modeling the 
interactions of people, robots, devices (e.g., cameras), 
documents (e.g., a written procedural checklist), 
communication tools (e.g., a radio walkie-talkie), and 
any arbitrary physical object (e.g., gloves). 
All people and objects are always located in an 
explicitly modeled geographic space, which provides 
important conditions for physical activities (e.g., 
finding parts, being in close enough proximity to see 
something, co-location of people leading to informal 
assistance). . The ability to convert a simulation into an 
implementation allows testing a system design in 
simulated scenarios that model configurations of 
people, machines, facilities, and geography to be tried 
in field tests. . Multiple Brahms systems can communicate and 
interact via proxy agents, allowing the runtime system 
to be physically distributed on a wireless network. 
Thus, existing software components written in other 
programming languages, such as the Dialog system, 
can interoperate within the Brahms language of agents, 
beliefs, activities, and actions. 
The layered communication architecture is robust and 
flexible, allowing components to be added or removed 
at runtime: MEX provides a wireless system for 

--transmitting data;-CAoS provides a system for agents 
to register their presence on the network and regulate 
their interactions through policies. Brahms is used for 
specifying how agents request or provide data in a 
proactive, reactive, or responsive way. With 
appropriate formalization of protocols (e.g., for 
handling loss of communication), agents can 
compensate for missing components or leverage the 
presences of specialized services (e.g., a controllable 
camera on the ERA). 
Group inheritance of activities and beliefs allows 
efficiently representing multiple instances of objects 
and agents (e.g., multiple ATVs). The subsumption 
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architecture implemented by the Brahms engine 
en&les srctivities to be simu!taceously “ruming” so 
detectables and conditional actions can handle general 
goals (survival) and specific tasks (e.g., getting 
samples) in parallel, while shifting attention by 
priority-based interruption (Le., conditional actions 
called workframes have priorities). 
Brahms’ well-developed Integrated Development 
Environment, compiler, JAVA integration, and Agent 
Viewer display provides an integrated toolkit for 
writing, testing, fielding, and reusing a multiagent 
system. Work in progress involves coupling Brahms to 
a real-time virtual reality display implemented in 
Adobe AtmosphereTM. ‘For example, this will enable 
the habitat crew and RST to quickly visualize and 
hence more easily monitor and control the 
configuration of the EVA crew, ERA, and other tools. 

Related Work 
Different research surveys document a wide variety of 
methods and issues in the development of multiagent 
systems. Brahms in some respects is atypical, even within 
this range of research over the past decade. Some of the 
key differences between Brahms and most of the research 
reported about multiagent systems are listed here. 

Agents in our current scenarios are not conflicting or 
competing. Rather the total system is designed for a 
comprehensive, teamwork interaction that is mission 
oriented, transcending individual goals. Just as NASA 
trains flight controllers and astronauts to work 
harmoniously, a field system incorporating Brahms 
must have agents that are sensitive to and facilitating 
the overall activity of the group (of people, robots, and 
systems). In the Mars exploration environment there 
will not be “other, un-modeled agents” (Jennings et al. 
1998). A “market-based” architecture may be useful 
for a fleet of robots working together, but the overall 
system of people and machines must be highly 
cooperative and coordinated, especially in emergency 
situations. 
The Brahms tool is designed to produce a runtime 
system from a simulation. This is both a practical and 
methodological stance. Developing a simulation is our 
means of formalizing -- the requirements - of ~- the runtime 
system. Thus, the description is dynamic, with 
realizable properties discovered through scenario 
testing, which drives the entire model-building activity 
(a methodology we call “empirical requirements 
analysis”, Clancey et al. 200 1). 

The architecture shares the decompositional 
advantages of object-oriented programming, but the 
semantics of the agent-object distinction in Brahms 
always leads us to reconsider the differences between 
people and machines. Specifically, we are building 
tools to help people deal with complex work 
situations, many of which are caused by malfunctions 
or unpredictable behaviors of computerized devices 
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(e.g., the life support system). Our emphasis is on 
providing tools for facilitating rather than rep!acir?g 
human judgment (“human-centered computing”). 
The explicit modeling of objects, environment, and 
perception (as detectables) enables including a flexible 
number of sensors or other instruments in the fielded 
system. 
The implementation platform enables constructing a 
multiagent system in which software agents are 
running on moving, physical systems (e.g., ATVs, 
astronaut backpacks), hence our interpretation of the 
phrase “mobile agents.” 
We view autonomy as a means by which a remote 
group of people can delegate their monitoring and 
actions, required because of the communication time- 
delay and small size of the crew on Mars. For 
example, a science team on Earth could upload agents 
to run on the Mars surface, and these agents would 
make suggestions to the crew or gather data 
unobtrusively (taking photographs), just as the science 
team would if they could be on Mars (this is 
speculative, but surely a highly suitable application for 
the MAA). 
Our conception of multiagent interactions is that 
requests are not denied (hence they are more like 
object-oriented methods [Alonso 20021). However, 
agents in different locations with different data may 
need to exchange beliefs to negotiate a course of 
action. Or for example, the return of a subsystem to 
the network (e.g., the ERA) may require other agents 
to shift from a compensation protocol, to allow more 
capable agents to complete or redo a task (e.g., making 
a measurement). The scenarios we have attempted 
have not required us to confront these issues yet. As 
we continue our empirical requirements analysis 
approach of building incrementally and learning about 
desirable functions in authentic work settings, we 
expect that some of these complex, theoretical aspects 
of multiagent interactions may become relevant in the 
Mars exploration domain. 
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